http://www.ijieee.in

e-ISSN: 2454-9592; p-ISSN: 2454-8081

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

AN OVERVIEW OF ARTIFICIAL INTELLIGENCE APPLICATIONS FOR POWER ELECTRONICS

Abdul Rasheed A

Head of Department in Electronics Engineering Government Polytechnic College, Kannur – 670007, Kerala

ABSTRACT

AI/ML is applied differently in the field of power electronics than it is in other well-established domains, such speech recognition and image classification. Preventative maintenance, control loop optimization, and power converter design are the three main applications of AI/ML. Transmission line performance can be enhanced through the application of AI technology. An overview of artificial intelligence (AI) applications for power electronic systems is provided in this study. The three unique life-cycle phases design, control, and maintenance have a correlation with one or more of the activities that artificial intelligence (AI) is intended to do, such as data structure exploration, regression, classification, and optimization. The applications of expert systems, fuzzy logic, metaheuristic methods, and machine learning four types of artificial intelligence are explored. AI can be used by manufacturers of electronic gadgets to make them smarter and more functional. For instance, AI-enabled TVs can assist in automating picture mode, volume, on/off settings, and a number of other crucial aspects to guarantee that viewers can easily control the TV. To find common understandings, real-world implementation obstacles, and research prospects in the application of artificial intelligence (AI) to power electronics, more than 500 papers have been analyzed.

Index Terms- Artificial intelligence; design; intelligent controller; predictive maintenance; power electronic systems; prognostics and health management

INTRODUCTION

In power electronics, artificial intelligence (AI) and machine learning (ML) represent the next development in power converter design, control, and optimization. They expand upon the current digital power base. AI and ML will enable even more complicated and dynamic non-linear control surfaces to improve efficiency, reliability predictions, and health monitoring in power converters, much as digital power enables more complex control algorithms than analog control techniques [1]. This FAQ starts out by quickly reviewing the growing interest in AI/ML for power electronics applications. It then goes on to show two applications of AI/ML, one for motor drives and

one for grid-tied solar installations. Finally, it concludes with a review of some of the obstacles that still need to be overcome before AI/ML for power electronics can be used widely [2]. AI/ML technologies are being actively developed by power semiconductor businesses and power converter makers. AI-related research and development in power electronics is booming (Figure 1). AI/ML is applied differently in the field of power electronics than it is in other well-established domains, such speech recognition and image classification. Preventative maintenance, control loop optimization, and power converter design are the three main applications of AI/ML.[3]

e-ISSN: 2454-9592; p-ISSN: 2454-8081

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

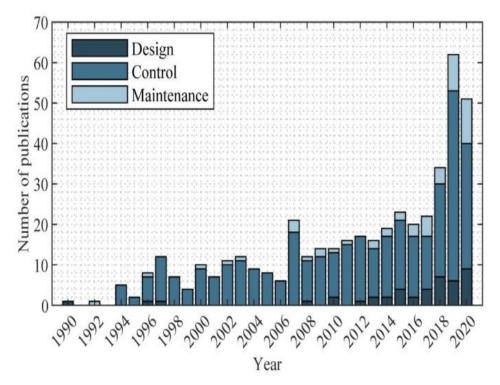


Figure 1: Number of technical papers on using artificial intelligence in power electronics

AI APPLICATIONS IN THE FIELDS OF ELECTRICAL, ELECTRONIC, AND COMMUNICATION

AI is an interdisciplinary degree that offers proficiency in a variety of fields, including robotics, machine perception, and computer vision, artificial intelligence, and pattern recognition. The use of artificial intelligence in numerous engineering domains will usher in the next industrial revolution. A new frontier in the study of electronics and communication engineering is machine learning. Numerous data-driven artificial intelligence applications were created in the disciplines of speech, image, voice recognition, image analysis, communication, and other related fields during the 1980s and 90s. The majority of machine-learning algorithms rely on both software and hardware. Because hardware and software are required to run algorithms. We are unable to communicate with cloud-based clusters, particularly in the absence of a microprocessor or micro-controller. [4]

MACHINE LEARNING IN COMMUNICATION ENGINEERING

The worldwide interest in information traffic has encountered unstable development throughout the last few years. In the new age of correspondence frameworks, information traffic is supposed to keep stressing the limits of future correspondence organizations. Alongside the amazing development in information traffic, new uses of correspondences, like wearable gadgets, independent frameworks, drones, and the Web of Things (IoT), proceed to arise and create much more information traffic with immensely unique execution necessities. This development in the application space presents an unavoidable requirement for wiser handling, activity, and advancement of the correspondence organizations. upcoming reception of AI in design has been particularly important for growing the skylines of sign handling. These frameworks have the capability to proficiently build the exactness and emotional quality when sound, pictures, and different data sources are communicated. AI calculations make it conceivable to show signals,

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

identify significant examples, foster valuable inductions, and make profoundly exact acclimations to flag yield. Past shrewd organizations, the board, and AI will permit future correspondence organizations and their applications, e.g., IoT, to take advantage of enormous information investigation in order to improve situational mindfulness and general organization activity. Especially the gigantic measures of information created from different sources that range from network estimations to IoT sensor readings, as well as robots and reconnaissance pictures, can be utilized to show the complete functional perspective on the huge number of gadgets inside the organization. Moreover, this extensive view can be taken advantage of to identify peculiar occasions in correspondence organizations. [6]

AI IN THE ELECTRICAL INDUSTRY

In the energy world, on account of the tremendous measures of information and the worth of the data that can be extracted, there are as of now various applications, especially to help effectiveness and energy change and for sustainable sources. Here, manmade consciousness assumes a significant role right all along: with regards to recognizing the most reasonable locales for a breeze- or sun-based plant, simulated intelligence can give valuable even planned signs about accessible assets and plant productivity, in addition to potential dangers connected with soil qualities or outrageous climate occasions. Man-made reasoning can likewise help in planting the board by giving more precise and solid weather conditions conjectures (wind and irradiance), bringing about better gauges of anticipated creation. It can improve creation because of the investigation of execution information from sensors. On account of hydropower, more dependable appraisals of water streams assist with diminishing waste and expanding creation. Decreasing age costs make inexhaustible more cutthroats, helping the two clients and the climate. The security of biodiversity can likewise benefit; as a matter of fact, computerized reasoning can foresee the relocation and flight examples of birds to more readily design the development and activity of a breeze ranch to limit its effect. [5-8]

ROBOTIC MONITORING AND PREDICTIVE MAINTENANCE

e-ISSN: 2454-9592; p-ISSN: 2454-8081

Similarly, while perhaps not more significant, is the job of man-made reasoning in plant observation and support exercises. Its utilization, joined with that of robots and robots, empowers quicker, more secure and more viable reviews in 'troublesome' conditions. The most encouraging application concerns prescient upkeep: simulated intelligence calculations, thanks to a limited extent to remote checking frameworks, can foresee with extraordinary precision the gamble of disappointment in a plant, so preventive moves can be made before it happens. This permits upkeep intercessions to be prepared, keeping away from crisis circumstances, enormously diminishing expenses, and planting personal time. Within the sight of disappointment, computer-based intelligence serves to rapidly figure out the sort of harm, the causes, and potential results, and can accelerate decision-making for measures to be taken. Indeed, even on account of additional standard errands, such as cleaning sunlightbased chargers, artificial intelligence can give valuable signs about the timing and need for cleaning to enhance the recurrence and proficiency of these exercises, again expanding power creation as well as saving water.[7]

FUNCTIONS AND METHODS OF ARTIFICIAL INTELLIGENCE FOR POWER ELECTRONIC SYSTEMS

A rundown of the techniques, capabilities, and uses of simulated intelligence for power hardware It tends to be seen that computer-based intelligence has been broadly applied to the three particular life-cycle periods of force electronic frameworks, including configuration, control, and support. As a utilitarian layer among simulated intelligence and power electronic applications, the fundamental elements of artificial intelligence are ordered as improvement, classification, relapse, and information structure investigation [7]:

• **Streamlining:** It alludes to find an ideal arrangement expanding or limiting goal capabilities from a bunch of accessible choices given imperatives,

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

uniformities, or in-balances that the arrangements need to fulfill. For instance, in the plan task, enhancement fills in as a device to investigate an ideal arrangement of boundaries that boost or limit plan objectives with plan requirements.[8]

- Classification: It manages relegating input data or information with a mark demonstrating one of the k discrete classes. Specifically, irregularity identification and shortcoming finding in upkeep is a commonplace classification errand to decide shortcoming names with condition checking data.
- **Relapse:** By recognizing the connection between input factors and target factors, the objective of relapse is to anticipate the worth of at least one consistent

e-ISSN: 2454-9592; p-ISSN: 2454-8081

objective factor given input factors. For instance, a clever regulator can be worked with a relapse model between the informational electrical signs and the result control factors.

• Information structure investigation: It comprises of information bunching that finds gatherings of comparative information inside a dataset, thickness assessment that decides the circulation of information inside the information space, and information pressure that projects high-layered information down to low-layered information for include decrease. For instance, in support, the debasement state bunching is inside the information structure investigation classification.[10]

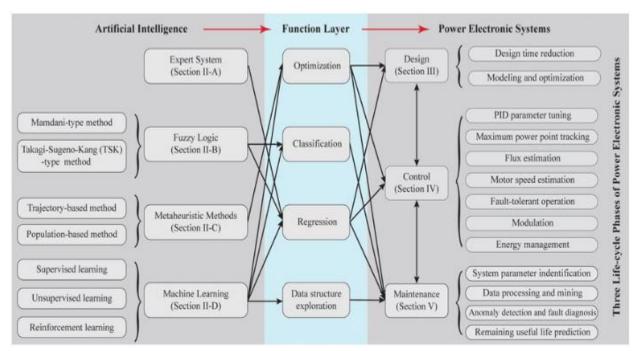


Figure 2: The application of artificial intelligence in the life-cycle of power electronic systems.

MACHINE LEARNING

AI is intended to find standards and consistencies with experience from either gathered information or communications by experimentation consequently. For applications in power hardware, it is classified as regulated learning, unaided learning, and support learning.1) Administered Learning: With the preparation dataset comprise in of info and-result coordinates, the directed learning plans to certainly lay

out the planning and useful connections between the data sources and results. This component is particularly helpful for cases in power hardware where framework models are trying to form. By and large, the assignments of the directed learning incorporate classification and relapse. For classification, its result of the info and-result matches in the preparation dataset manages a finite number of discrete classes to be marked. For instance, the shortcoming determination for a staggered inverter is a run of the

e-ISSN: 2454-9592; p-ISSN: 2454-8081

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

mill classification task where the discrete shortcoming name should be identified given the info shortcoming data. For a relapse task, the result of the information and-result matches comprises of at least one persistent factor [9]. An illustration of relapse is the leftover valuable life expectation of IGBTs where the result, i.e., the remaining helpful lifetime, is a consistent variable. When the model is prepared, it is prepared to assess new information focuses that contrast from the preparation dataset. The model ability in managing new data of interest, i.e., the ones in the testing dataset, is named as the speculation. Since the preparation dataset contains just a restricted measure of conceivable info and-result matches much of the time, its speculation on new data sources is one of the most basic exhibition elements of managed learning strategies [14]. For the most part, managed learning techniques can be sorted into connectionism-based strategies (i.e., brain network strategy), probabilistic graphical strategies, and memory-based strategies (i.e., piece technique). For brain network techniques, information gained from the preparation dataset is worked with and moved as the association loads and designs of the organization. Various examinations has been committed to working on the presentation of brain network strategies. These upgrades are from two angles for applications in power gadgets. The first viewpoint manages empowering the vulnerability ability in dealing with the uproarious sign of the brain organization to further develop the strategy heartiness. This element is worked with by incorporating the fluffy rationale into the brain network as the fluffy brain organization or its variations (e.g., versatile neuron-fluffy deduction framework (ANFIS) [11]). The subsequent perspective is for dynamic-execution improvement of the brain organization to handle timeseries dataset cases, e.g., savvy regulator, staying helpful life expectation. Contrasted with the traditional brain network where the organization loads are free, the transient execution is worked with by dividing loads among various layers and organization cells. The weight sharing can be carried out either in a shallow scale with a convolutional structure (e.g., 1-D convolutional brain organization, Time-postponed brain organization (TDNN) [4]), or in full and profound scale by involving a repetitive unit as repetitive brain network [5]. For the most part, the demonstrating capacity of repetitive unit execution is better than the one with a convolutional structure. More hypothetical subtleties of the brain network strategies are examined in Section 5 of [12-13]. The probabilistic graphical techniques get information from the information by utilizing a diagrammatic portrayal of information and-result matches. The diagrammatic portrayal suggests the restrictive reliance connection between the choice factors. The basic relationship in the model is figured out in the Bayesian structure and can be gathered in a Subsequently, probabilistic manner. interpretability of the model is vastly improved contrasted with brain network strategies. Plus, the probabilistic graphical model is unrivaled in managing vulnerability and deficient information [15].

CONCLUSIONS

In spite of the fact that there have been a ton of studies and explorations on the likely use of computer-based intelligence in power hardware, it has not yet accomplished the potential it professes to have. More profound examinations and explorations are important to use the total force of the information to prepare models for artificial intelligence.

There are various motivations behind why businesses wonder whether or not to execute artificial intelligence, including:

- Execution intricacy
- Uncertainty about calculation strength and precision
- Additional equipment cost
- Enormous computational energy utilization

One more bottleneck in the execution of artificial intelligence in power hardware is the absence of accessibility of broad datasets to prepare models. Making these datasets is an asset consuming errand, and with regards to somewhere safe basic undertakings, the accessible information is even less. Hence, it is important to foster an information light man-made intelligence arrangement that can give wanted arrangements less preparation information.

(IJIEEE) 2021, Vol. No. 7, Jan-Dec

According to the strategy point of view, the man-made intelligence techniques applied in power electronic frameworks can be ordered as master framework, fluffy rationale, metaheuristic techniques, and AI. The utilization rate, benefits, and restrictions of pertinent artificial intelligence calculations in every classification are thoroughly looked at. According to the capability viewpoint, the simulated intelligence

related applications are basically managing the enhancement, classification, relapse, and information structure investigation. The achievements of significant calculation variations and applications are identified and coordinated as a timetable guide. For every life-cycle stage, illustrative models are examined and the difficulties and future examination valuable open doors are identified.

e-ISSN: 2454-9592; p-ISSN: 2454-8081

REFERENCES

- [1]. Zhao, S., Blaabjerg, F., & Wang, H. (2020). An overview of artificial intelligence applications for power electronics. IEEE Transactions on Power Electronics, 36(4), 4633-4658.
- [2]. Novak, M., & Dragicevic, T. (2020). Supervised imitation learning of finite-set model predictive control systems for power electronics. IEEE Transactions on Industrial Electronics, 68(2), 1717-1723.
- [3]. Yap, K. Y., Sarimuthu, C. R., & Lim, J. M. Y. (2020). Artificial intelligence based MPPT techniques for solar power system: A review. Journal of Modern Power Systems and Clean Energy, 8(6), 1043-1059.
- [4]. Guillod, T., Papamanolis, P., & Kolar, J. W. (2020). Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open Journal of Power Electronics, 1, 284-299.
- [5]. Bose, B. K. (2020). Power electronics and motor drives: advances and trends.
- [6]. Li, Z., Gao, Y., Zhang, X., Wang, B., & Ma, H. (2020). A model-data-hybrid-driven diagnosis method for open-switch faults in power converters. IEEE Transactions on Power Electronics, 36(5), 4965-4970.
- [7]. Koay, Y. Y., Tan, J. D., Koh, S. P., Chong, K. H., Tiong, S. K., & Ekanayake, J. (2020). Optimization of wind energy conversion systems—an artificial intelligent approach. International Journal of Power Electronics and Drive Systems, 11(2), 1040.
- [8]. Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., ... & Mohyuddin, W. (2020). Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment. Ieee Access, 8, 109581-109595
- [9]. Vakacharla, V. R., Gnana, K., Xuewei, P., Narasimaharaju, B. L., Bhukya, M., Banerjee, A., ... & Rathore, A. K. (2020). State-of-the-art power electronics systems for solar-to-grid integration. Solar Energy, 210, 128-148.
- [10]. Huang, J., Zhang, X., & Zhao, B. (2019). Simplified resonant parameter design of the asymmetrical CLLC-type DC transformer in the renewable energy system via semi-artificial intelligent optimal scheme. IEEE Transactions on Power Electronics, 35(2), 1548-1562.
- [11]. Xue, Z. Y., Xiahou, K. S., Li, M. S., Ji, T. Y., & Wu, Q. H. (2019). Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 2600-2610.
- [12]. Hannan, M. A., Lipu, M. H., Ker, P. J., Begum, R. A., Agelidis, V. G., & Blaabjerg, F. (2019). Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Applied energy, 251, 113404.
- [13]. Belu, R. G. (2019, June). Board 69: Project-based Teaching Approach of a Combined Undergraduate and Graduate Course in Power Electronics. In 2019 ASEE Annual Conference & Exposition.
- [14]. Zeng, X., Li, Z., Wan, J., Zhang, J., Ren, M., Gao, W., ... & Zhang, B. (2019). Embedded hardware artificial neural network control for global and real-time imbalance current suppression of parallel connected IGBTs. IEEE Transactions on Industrial Electronics, 67(3), 2186-2196.
- [15]. Liu, C., Bai, H., Zhuo, S., Zhang, X., Ma, R., & Gao, F. (2019). Real-time simulation of power electronic systems based on predictive behavior. IEEE Transactions on Industrial Electronics, 67(9), 8044-8053.